Fault Diagnosis System for NPC Inverter based on Multi-Layer Principal Component Neural Network

نویسندگان

  • Danjiang Chen
  • Yinzhong Ye
  • Rong Hua
چکیده

This paper presents a fault diagnosis method for a neutral point clamped (NPC) inverter using a multi-layer artificial neural network (MANN). The considered possible faults of NPC inverter include the open-circuit fault occurring in one single device or more devices. The upper, middle and down bridge voltages are adopted the test signals because of the difficulties in isolating some fault modes. A novel multi-layer neural network is proposed to diagnose all possible open-circuit faults. Furthermore, the principal component analysis (PCA) is utilized to reduce the input size of neural network. The comparison between neural network with and without PCA is performed. The simulation and experimental results prove the feasibility of the diagnostic method and show that the proposed method has the advantages of good classification performance and high reliability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis System for a Multilevel Inverter Using a Principal Component Neural Network

A fault diagnosis system in a multilevel-inverter using a compact neural network is proposed in this paper. It is difficult to diagnose a multilevel-inverter drive (MLID) system using a mathematical model because MLID systems consist of many switching devices and their system complexity has a nonlinear factor. Therefore, a neural network classification is applied to the fault diagnosis of a MLI...

متن کامل

Fault Diagnosis of Multilevel Cascaded Inverter Using Multi Layer Perceptron Network

In this study, a fault diagnostic system in a multi-level inverter using a MLP network is developed. Using a mathematical model, it is difficult to diagnose a Multilevel-Inverter Drive (MLID) system, because MLID system complexity has a non-linear factor and it consist of many switching devices. Therefore neural network classification is applied to fault diagnosis of MLID system. Multilayer per...

متن کامل

AN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS

In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...

متن کامل

Developing A Fault Diagnosis Approach Based On Artificial Neural Network And Self Organization Map For Occurred ADSL Faults

Telecommunication companies have received a great deal of research attention, which have many advantages such as low cost, higher qualification, simple installation and maintenance, and high reliability. However, the using of technical maintenance approaches in Telecommunication companies could improve system reliability and users' satisfaction from Asymmetric digital subscriber line (ADSL) ser...

متن کامل

Online Monitoring and Fault Diagnosis of Multivariate-attribute Process Mean Using Neural Networks and Discriminant Analysis Technique

In some statistical process control applications, the process data are not Normally distributed and characterized by the combination of both variable and attributes quality characteristics. Despite different methods which are proposed separately for monitoring multivariate and multi-attribute processes, only few methods are available in the literature for monitoring multivariate-attribute proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013